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Boundary-layer f low and heat transfer of non-Newtonian fluids in porous media are 
explored analytically. The local Nusselt number for forced and natural convection of 
non-Newtonian fluids in porous media on an isothermal semi-infinite plate is obtained as 
a function of the rheological parameters n and ft. The results show that these parameters 
have a significant effect on the heat transfer rate and f low behavior. 

Keywords: Porous media; non-Newtonian fluid; heat transfer; natural convection 

In t roduct ion  

The theories used now to analyze the flow through a porous 
medium and to predict the heat transfer rates are based on the 
assumption that the fluid is Newtonian and hence Darcy's 
law holds. While for many fluids, such as water, air, and light 
oil, which are essential Newtonian fluids, this assumption is 
justified, it is not so for a large class of complex fluids, such as 
heavy crudes produced currently from certain oil fields, waxy 
crudes located in reservoirs of shallow depth, polymer solutions 
in chemical engineering, and blood. It is evident that the flow 
of a non-Newtonian fluid through a porous medium will have 
non-Newtonian characteristics. 

Thus many works have been devoted to improving our under- 
standing of isothermal flow of non-Newtonian fluids through 
a porous medium, 1-5 with diverse applications in petroleum 
reservoir engineering, 6'7 naval architecture, s polymer process- 
ing, 9 and lubrication in porous bearings. 1° 

Identical to the isothermal flow of non-Newtonian fluids 
through porous media, nonisothermal flow has incurred in 
some important engineering applications; for example, enhanced 
recovery of heavy oil by thermal methods, ~1 and polymer 
processing in packed beds. ~2 Despite these applications and 
despite the strong interest expressed by the fluid mechanics and 
heat transfer communities in the same phenomenon without 
porous structure, ~a the nonisothermal flow and heat transfer 
of non-Newtonian fluids in porous media has escaped scrutiny. 

For  Newtonian fluids, viscosity is a parameter depending on 
temperature but not on conditions of measurement; non- 
Newtonian fluid viscosity, however, depends strongly on shear 
rate. In order to solve the problems associated with flow 
through porous media, an analytical expression of the curves 
of rheological behavior is required. Most of the frequently used 
empirical relations to express analytically the apparent viscosity 
in terms of shear rate are various forms of the power law. For 
example, the most widely used for a fluid with a structure at 
zero shear rate is the empirical equation 

z=H~n+ro ;  z > z  o (1) 

From this equation the apparent viscosity will be 

r/,(#)= H~" 1 + Zo/~ (2) 
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where n, H, and z o are rheological parameters to be determined 
from rheological tests. These parameters depend strongly on 
temperature. Useful correlations for temperature dependence 
presented in the literature are 4 

H(T)=H(To)  e x p [ - a ( T -  To)/To] (3) 

zo(T) = to(To) + b ( T -  To)IT o (4) 

and 

n(T) = n(To) + c(T--  To)/T o (5) 

in which To is the reference temperature. The notations used 
are shown in the nomenclature. 

From a rheological point of view the fluids for n < 1 and n > 1 
are of pseudoplastic and dilatant type, respectively, with a 
reduction or increase in apparent viscosity as the shear rate 
increases. For n = l ,  relation 1 reduces to the well-known 
Bingham equation. 

Obviously the rheological model described by Equation 1 
reflects the two most important aspects of the behavior of 
non-Newtonian fluids observed from experimental data: the 
existence of a yield stress and non-Newtonian flow curve above 
the yield stress. At moderate and high shear rates the yield 
stress effect on apparent viscosity is insignificant. However, at 
low shear rate this effect becomes significant and cannot be 
neglected in Equation 2. For  example, in the production of 
heavy crudes, a better rheological description should be the 
generalized Bingham model given by Equation 1, since the 
lower shear rates expected to be in the range 0.1-1.0s -1 
frequently occur in flow through porous media. However, 
another class of non-Newtonian fluids, such as polymer solutions 
and micro- and macroemulsions, which are often injected in 
oil reservoirs in order to improve the recovery efficiency, may 
be described by a power law equation without considering the 
yield stress. 

From this discussion it is evident that an understanding of 
flow behavior of non-Newtonian fluids through porous media 
is essential for practical purposes. For nonisothermal flow one 
also must know the convective heat transfer processes from 
heated surfaces to the surrounding fluid-filled porous media 
with respect to evaluating the effect of buoyancy force due 
to temperature difference on flow, and for determining the 
temperature distribution corresponding to flow conditions so 
as to estimate the rheological parameters of the flow, since they 
depend strongly on temperature. The major objective of this 
investigation is to reveal the flow and heat transfer deviation 
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from Newtonian behavior expressed in terms of rheological 
parameters, using very fundamental examples of boundary- 
layer flow, that is, forced and natural boundary-layer flows 
along an isothermal semi-infinite flat plate. 

~ porous 
medium T~ 

B a s i c  e q u a t i o n s  

We develop the basic principles of flow mechanics and heat 
transfer through a non-Newtonian fluid-saturated porous 
medium. These principles mainly consist of mass conservation, 
a modified Darcy law, and energy conservation. 

For  a two-dimensional averaged flow of any fluid and relative 
to the coordinate system of Figure 1, the mass conservation 
statement reads 

Ou Or=0 --+ (6) 
dx Oy 
and the steady-state energy conservation has the form 

t3T t3T ff632T t;32T'~ 
x.) (7) Ox Oy 

where ~t is the thermal diffusivity. 
To consider the rheological effect in the flow description 

through a porous medium, we need a modified Darcy law. For  
the rheological model given by Equation 1 the modified Darcy's 
law may be written as 4 

v K 
= [ - ~ f  (grad p--~to)] 1/" (8) 

which is valid provided that 

Ig rad P[ > =o, v ¢ 0 (9) 

~<=0, v = 0  

Equation 8 was obtained by applying Kozeny's approach to a 
capillary model of a power law fluid in the presence of a yield 
stress. By this approach, the following expression for K/l~,f was 
found: 14 

K _  1 ( nc~ y ( 8 K ~  °+',/2 (10) 
#~f 2H\ l+3n]  \ c]~J 

T®, U® y t 
T 

///////////////x=O 
Figure I Forced convection boundary-layer flow through a porous 
medium near a heated horizontal wall 

The threshold gradient in Equation 8 may be expressed in terms 
of yield stress: a 

~.z o s 0 -  (11) 

where ~ is porosity and 2 is a dimensionless constant to be 
determined experimentally. Most recently, the modified Darcy 
law (8) has been verified by experiment) 8 

It is obvious that when n = 1 and Zo = 0 for Newtonian fluids 
Equation 8 reduces to Darcy's law. 

In the presence of a body force per unit volume POx, Equation 
8 becomes 

[ K \1/, 
v=~-~ , f  (gradp+pgx-°t°)) if{gradp+Pgx[>ct° (12) 

v = 0 if ]grad p + POx{ <~ so 
acknowledging the fact that the flow through the porous 
medium stops when the externally controlled pressure gradient 
matches the hydrostatic gradient P9~. 

Equations 6, 7, and 12 are composed of the governing 
equations for the flow and heat transfer of non-Newtonian 
fluids in porous media. To illustrate the rheological behavior 
effect on the flow and heat transfer in a porous medium, we 
consider two classical problems in convection processes through 

N o t a t i o n  

a Constant, Equation 3 
b Constant, Equation 4 
c Constant, Equation 5 
f Similarity stream function profile 
9 Gravity 
H Consistency index 
K Permeability 
L Wall length 
n Power of non-Newtonian fluid 
Nu Nusselt number, Equation 40 
p Pressure 
Ra, Modified Rayleigh number, Equation 35 
T Temperature 
u, v Velocity components, Figures 1 and 2 
x, y Cartesian coordinates, Figures 1 and 2 

Greek symbols 
s Thermal diffusivity 
So Threshold gradient 

fl Coefficient of thermal expansion 
Shear rate 

f Velocity boundary-layer thickness, Figure 2 
6x Temperature boundary-layer thickness, Figure 2 
AT Temperature difference, T o -  7". 
r/ Similarity variable 
r/a Apparent viscosity 
0 Dimensionless temperature 
2 Constant 
/~=f Effective viscosity 
p Density 

Shear stress 
Zo Shear stress at zero shear rate 
q~ Porosity 

Stream function 
fl Dimensionless rheological parameter, Equation 30 

Subscripts 
x Local property 
0 Wall property 
oo Porous reservoir property 
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porous media: forced and natural boundary-layer flows about 
an isothermal and semi-infinite plate. 

Forced boundary layers 

As a basic problem in heat transfer through porous media 
consisting of predicting the heat transfer rate between a differen- 
tially heated solid impermeable surface and a fluid-saturated 
porous medium, the forced boundary-layer parallel flow per- 
meating through the porous material confined by the horizontal 
flat plate is considered, as seen in Figure 1. 

Relative to the geometry and two-dimensional coordinate 
system of Figure 1, the steady-state governing equations are 

du+d~v=0 (13) 
dx dy 

u . _ K [ (  dp~ if dp a0 -~ L\-Ux/-~'0] -~ > 

ddP x (14) u = 0  if - ~<~o 

dT aT d2T 
u - - + v  - - = ~  - -  (15) ~dx dy dy 2 

where it has been assumed that p is constant, that the boundary 
layer is slender compared with the characteristic length L, and 
that the gravity effect is negligible. 

Consider now the uniform parallel flow 

, , {me  / u=U~, v=0,  p ~ x ; = - ~ U ~ + % / x + c o n s t .  (16) 

that satisfies the mass conservation (13) and momentum 
equations (14). 

The heat transfer rates between the x > 0 wall and the porous 
medium can be obtained by similarity solutions to the heat 
transfer problem described by Equations 13-15 and the bound- 
ary conditions of Figure 1. According to this similarity solution, 
the local Nusselt number is x6 

Nux = 0.564Pe~/2 (17) 

if the local Peclet number is defined as 

U oox 
Pex - (18) 

Averaging the heat transfer coefficient over the heated wall 
length L, we obtain 

Nuo_L= 1.13Pe~/2 (19) 

Thus we conclude that the heat transfer correlation for forced 
boundary-layer flow of non-Newtonian fluids in porous media 
is the same as that for the flow of Newtonian fluids, if based on 
the velocity parameter Uo~. But they differ from each other 
when the dimensionless Peclet number is expressed on the basis 
of -dp/dx as follows: 

Pex=(-K~dpy/"x (1-~) 1In (18)' 
\ #a  dx )  

where 

= %/( -- dp/dx) (20) 

S T 

/ 

To I]11 

insulated 

velocity 
profile 

To 

temperature 
profile 

porous 
medium 

Figure 2 Natural convection boundary-layer flow through a porous 
medium near a vertical wall 

with a non-Newtonian fluid (Figure 2). The surface is maintained 
at a constant temperature T O different from the porous medium 
temperature Too sufficiently far from the wall. For  this simplest 
boundary-layer problem for natural convection in porous 
media, the conservation equations for steady, constant-property 
free convective boundary-layer flow can be deduced from the 
basic equations presented above and written as 

du dv 
- - + - - = 0  (21) 
dx dy 

u"=K~(-~xx-Pgx-%)#=f i f - ~ - P g x  > %  

dp (22) 
u = 0  if - ~ x - p 9  x <~% 

dT dT d2T 
u - - + v - - = ~ - -  ( 2 3 )  

8x dy dy E 

In Equations 21-23, p and #a are the density and effective 
viscosity of the fluid; K is the intrinsic permeability of the 
porous medium. 

The appropriate boundary conditions are 

v=0;  T=T o at y = 0 ,  x > 0  

u ~ 0 ;  T~T® a s y ~  

u=0;  T = T  o a t x = 0 ,  y > 0  

(24) 

Natural boundary layers 

Consider the natural boundary-layer flow near a vertical 
impermeable surface embedded in a porous medium saturated 

For the free stream, Equation 22 gives 

dp 
- - - - p ~ 9 = O  

8x 
(25) 
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Eliminating (fp/tfx between Equations 22 and 25, we have 

K 
u " = - -  ((p~--p)g--Cto) if I(p~-p)gl>~o 

/Lee (26) 

u = 0  if [(Poo -P)9[ <~O~o 

Taking into account the equation of state 

p = p~o(1 - f l ( T -  To)) (27) 

the Boussinesq-approximated momentum equation reduces to 

u "-p°°gf lK (T - -T~) - -~g f l  i f /~lr_r~] > =o 
I~a P o~g 

u--O if flIT_ T~I~ ~o (28) 
P®g 

where fl is the volumetric coefficient of thermal expansion. 
Now we solve this boundary-layer heat transfer problem 

based on scale analysis, leaving the more accurate results of 
similarity analysis for presentation later. 

The scales of the flow and temperature fields near the vertical 
surface of Figure 2 can be determined based on order-of- 
magnitude analysis. Consider for this purpose the thermal 
boundary layer of height L and thickness 8iT, and the velocity 
boundary layer of height L and thickness 3. For the flow of 
Newtonian fluids in porous media, 8 = 3T, which can be drawn 
from Darcy's law. However, for the flow of non-Newtonian 
fluids, the velocity profile will approach zero when T is equal 
to T~+ao/p~gfl at a specific point in the thermal boundary 
layer; thus 6 ~< 8 T. This is illustrated mathematically in Equation 
28 and schematically in Figure 2. 

The velocity scale is, from Equation 28, 

p~ogflK AT 
u~ (1 -f2)  1/" (29) 

]-tef 

where 

fl ao (30) 
gp~#(To- T~) 

is a parameter related to the yield stress of non-Newtonian 
fluids. 

In the velocity boundary layer (L, 6) the energy equation 
(Equation 10) indicates a balance between thermal diffusion 
from the side and vertical enthalpy flow: 

T(1 --~)  T(1 --~)  T(1 --fl) 
u - -  or v - - , a - -  (31) 

L 8 8 2 

Since the principle of mass conservation (21) in the (L, 8) layer 
requires 

u/L ~ v/5 

we realize that the two convection scales in Equation 31 are of 
the same order of magnitude; hence, energy conservation in 
the velocity boundary layer requires 

T(1 --f~) T(1 --f~) 
u .a - -  (32) 

L 32 

o r  

8 ~ L  Ran" 1/2(1 - -~)-  x/2. (33) 

u ~ alL Ra. (34) 

where Ra. is defined similar to the Darcy-modified Rayleigh 
number used routinely in natural convection heat transfer 
through porous media, and it includes the rheological behavior 

of non-Newtonian flow: 

Ra.=(PccgflK(T°- T~!) 1/" L (35) 
\ gef ct 

The scale of thermal boundary-layer thickness 3T can be 
obtained by integrating the energy conservation equation, 
Equation 23, in the thermal boundary (L, ST); that is, 

d _(~r 0T (36) 
d x . v  u ( T - T o o ) d y = - a ~ y , =  ° 

Since u = 0 in the region 3 ~< y ~< fix, the above integral can be 
simplified to 

dx u ( T -  Too) dy=  (37) 
(fy r=o 

The scaling equivalence recommended by Equation 37 is 

u8 AT(1 - n ) ~ a  AT (38) 
L ti T 

where the u scale is dictated by the b-layer scale (Equation 34). 
Combining, we find 

1 
3T~ 3~LRa~I/2(1--~) -(2"+1)/2" (39) 

1--f~ 

The overall Nusselt number 

Nu = q/k A T (40) 

scales as 

Nu (kL AT/bT) ~Ral/2(1--fl)t2.+ 1)/2. (41) 
k A T  

The flow field and heat transfer scales in Equations 33, 34, 39, 
and 41 agree within a factor of order one with the similarity 
solution, as we shall see. 

Natural boundary layers of non-Newtonian fluids in porous 
media have two length scales, 6 and fT. This feature distinguishes 
them from their counterparts in Newtonian fluids, which are 
characterized by a single length scale 8iT" 

The similarity formulation of the isothermal wall problem 
starts with deducing the similarity variable from Equations 33 
and 39: 

Y 1/2 (42) r / = -  Ran,x 
X 

Introducing the similarity profiles as for Newtonian fluids gives 

~p T - -T  o 
- f (q) ,  0(q) (43) 

Ra~,/~ 2 To -- To~ 

The problem statement (20-23) becomes 

f ' = ( O - f l )  1/" i f 0 > f l  
(44) 

f '  =0  if 0~<~ 

0" + ½fO' = 0 (45) 

f(0) = 0, 0(0) = 1 (46) 

f ' (oo)=O, 0(oo)=0 

The problem stated as Equations 44-46 was solved numerically 
for a wide range of the rheological parameters n and f~. The 
numerical procedure was the standard "shooting" method, by 
which Equations 44-46 were integrated from q = 0  onward, 
using the fourth-order Runge-Kutta method. To initiate the 
integration, we had to guess the value of 0'(0) and to adjust 
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this guess until the outer boundary condition (46) was satisfied. 10 
The numerical results presented in this paper were all obtained 
based on the shooting success criterion 

0 8  

10(oo)1 ~<5 x 10 -4 (47) 

A shooting distance q~>15 was found to be adequate in 06 
simulating the r/--, oo limit of Equation 46. 

The local Nusselt number can be expressed by 0 

Nux = - 0'(0) Ra,1/x2 (48) 0.4 

where 
0 . 2  

Ra, x=(P~gflK(T°- T~)ll/" x (49) 

' \ /tel / ct 
0 , 0  

Obviously, the value -0 '(0)depends on the rheological param- 
eters of non-Newtonian fluids n and D, and is expressed as 

- 0 ' ( 0 )  = F ( n ,  D )  ( 5 0 )  

The value of -0 ' (0)  approaches a constant when n =  1 and lo 
D = 0. In fact, Table 1 shows that this limiting constant is 

F(1, 0)=0.444 (51) 08 

which agrees with the earlier calculation of Cheng and 
Minkowycz 17 for the local Nusselt number for a Newtonian 0.8 
flow through porous media. 0 

The local Nusselt number is listed in Table 1 for a wide range 04 
of parameters n and f~. These values agree to within a numerical 
factor of order 1 with the overall scales discussed above. Below 
we discuss the similarity results by focusing individually on the 02 
two rheological effects that deviate the flow and heat transfer 
phenomena from the Newtonian flow and heat transfer through 

O,C porous media, namely, the effect of power n and the parameter 
t2 which result from the yield stress. 

The effect of  rheological  parameters n and D 

Figures 3-5 show the effects of the rheological parameters n 1.o 
and f~ on the dimensionless temperature and velocity profiles. 
These plots indicate a significant deviation existing between o s 
Newtonian flows and non-Newtonian flows. For example, for a 
given value of the dimensionless group D=~o/p~g fl AT (i.e., 
the flow in the presence of a threshold gradient), the temperature 0.8 
for a pseudoplastic fluid is much larger than that of Newtonian 0 
fluids, while the velocity is smaller. The trend for a dilatant 
fluid is just negative. On the other hand, for a given value of 0.4 
rheological parameter n, Figures 3-5 indicate that the threshold 
gradient has a significant effect on the temperature distribution 

0 . 2  

as well as on flow behavior for a power law fluid. Temperature 
profiles become flatter and flatter, and the maximum velocities 
in the boundary layer decrease as the parameter f~ increases, o.o 

The thermal boundary layer thickness 6T also depends strongly 
on the rheological parameters n and ~. It has been seen from 
Figures 3-5 that 6 x increases as n decreases and/or D increases. 
Thus, the thermal boundary layer is much thicker for a 
pseudoplastic fluid with a threshold gradient than one in 

Table 1 Summary of similarity solutions for local Nusselt number 
-0'(0) 

0.0 0.2 0.4 0.6 0.8 1.0 

0.4 0.353 0.244 0.156 0.0965 0.0699 0.0 
0.8 0.424 0.338 0.255 0.168 0.0981 0.0 
1.0 0.444 0.365 0.282 0.196 0.11 5 0.0 
1.2 0.459 0.386 0.305 0.218 0.130 0.0 
1.5 0.475 0.409 0.332 0.245 0.1 50 0.0 

v n = 0 . 4  
o n = l . 0  
• n = l . S  

1 2 3 4 5 6 7 

1.0 

0.8 

0.6 

f, 

0.4 

0 . 2  

0.0 

v n = 0 . 4  

e n - - l . 0  

1 2 3 4 5 6 7 

Figure 3 The effect of power n when D=0.0: (a) temperature 
profiles; (b) velocity profiles 

V n = 0 . 4  

o n = l . 0  
• n = 1 . 5  

1 2 3 4 5 6 7 

1,0 

0.8 

0.6 

f ,  

0.4 

0.2 

0.0 

v n = 0 . 4  

o r l=  1.0 

• n = 1 . 5  

i 

2 3 4 5 6 7 

Figure 4 The effect of power n when ~=0.2 :  (a) temperature 
profiles; (b) velocity profiles 

v n = 0 . 4  

o o~,:0 

0 1 2 3 4 5 6 7 

0 8  

v n = 0 . 4  

0.6 c~ n = 1.0 
• n = 1 5  

f ,  

0.4 

0 , 0  " " 
2 3 4 5 6 

Figure 5 The effect of power n when D=0.4: (a) temperature 
profiles; (b) velocity profiles 

Newtonian flow. Due to the direct relation between local 
Nusselt number and thermal boundary-layer thickness, Nu is 
surely affected by n and D. This has been illustrated by the 
scale results and similarity ~sults in Table 1. Nux can be 
approximately correlated as a function of the rheological 
parameters n and D in the form 

Ra,~.'~ 2 ( l - D )  1/2" 1 -  (52) 

This correlat ion predicts Nu wi th in 10% accuracy for the 
parameter range of  0.5~<~r~<1.5 and 0~<D~<l. F rom this 
equation or Table 1, we see that the threshold gradient 
manifested in the dimensionless group D has more significant 
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effects on Nu  for a pseudoplastic fluid as compared with a 
dilatant fluid. 

For  power law fluids with no yeld stress (that is, I )=0 ) ,  the 
correlation 52 is simplified to 

N u x -  ~/3nn+ (53) Ra~./2 2 

This equation has been derived by the integral method for 
power law fluids 19 and predicts Nu  within 1% accuracy for 
0.4~<n~< 1.5. 

S u m m a r y  

Boundary-layer flow and heat transfer of non-Newtonian fluids 
in porous media has been explored analytically. For  a non- 
isothermal flow, heat transfer knowledge is required to evaluate 
the effect of the buoyancy force due to temperature differences 
on fluid flow and to specify the temperature distribution for 
the calculation of the rheological parameters n, z o, and H. 

The results obtained by the investigation on flow and heat 
transfer in forced and natural boundary layers on an isothermal 
semi-infinite plate revealed that n, Zo, and H have a significant 
effect on the heat transfer rate and flow behavior through a 
porous medium. These rheological parameters are associated 
with physical properties of the fluid and the porous medium, 
and boundary conditions of the problems in several dimension- 
less groups. For  example, for natural convection of non- 
Newtonian fluids on a vertical isothermal plate the dimensionless 
parameter 

\ ~ef  

extends the application of the Darcy-modified Rayleigh number 
in Newtonian flow through a porous medium to the non- 
Newtonian case, and the dimensionless group 

= ~to/p~g fl A T  

determines the influence of threshold gradient on heat transfer 
and flow behavior. If the flow is produced by an externally 
forced pressure gradient, this group becomes 

f~ = ~o/( - dp /dx)  

The heat transfer correlation for forced convection of lon- 
Newtonian fluids in porous media was found to be the same 
as that for Newtonian fluids, 

NUx = 0.564Pe~/2 

if the Peclet number is defined based on the free stream velocity 
U~,  but not on pressure gradient. The heat transfer correlation 

for natural convection is approximately expressed by 

D~]~-2 - -  (1 - -  ~"2) 1/2n 1 - -  
Ran.x 
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